
ConspireComponents
SDK Reference Manual

Welcome to ConspireComponents.

This document is designed to get you up to speed as quick as possible on how to use the

components in development and product environments.

ConspireComponents is a PHP library and as such will require an environment capable of handling

PHP scripts. Additionally the ionCube decoders (available free from http://www.ioncube.com/ if you

have not already installed them), cURL and MCRYPT modules will need to be installed and

configured for your PHP version.

To begin using ConspireComponents, you'll need an active licensing manager account and a valid

ConspireComponents license key. These details will have been emailed to you once they were

activated and the email will contain information on how to access the license management control

panel.

Contents

1. Installation

2. Basic Usage

3. Table Component

a. Code Reference

b. Examples

c. Customization

4. Tab Component

a. Code Reference

b. Examples

c. Customization

5. Form Component

a. Code Reference

b. Examples

c. Customization

6. Tree Component

a. Code Reference

b. Examples

c. Customization

1.0 - Installation

A typical ConspireComponents installation can be built using the following method:

1. Log into your licensing management control panel using the details outlined in your

activation email

2. Navigate to the ConspireComponents provision section by clicking on the

ConspireComponents logo and click the 'Download Distribution' button and save the .zip file

to your computer.

3. Unzip the distribution and upload the contents to your

hosting environment using FTP.

4. While the upload completes, provision a new site by using

the orange "provision new server / domain" box and ensure

the site slot is active You will need to complete this step for

every site the components will be installed on. For

development and staging servers, you will need to add a

site using each server IP address and host name - this

process will use up a site slot against your license, however

you may deactivate the development server once the site is

placed in production. Additional Site Slots are available as

an upgrade.

5. Once the files are uploaded to the server, use your web browser to navigate to:

http://yourdomain/conspirecomponents/ or

http://yourdomain/installationfolder/conspirecomponents (if the components were

installed somewhere other than the base site folder)

6. Ensure PHP has write access and cURL has access to external servers and then enter your

licensed username and the serial key for your ConspireComponents suite.

7. The installation will now contact the licensing server and create a license key file for the

installation.

8. Once the license file is written, the licensing client will display the 'license valid' message and

display your licensee information. The licensee name will be displayed in the HTML source

output of the components. If for any reason, this process does not return a license valid

message - please contact your account representative.

2.0 Basic Usage

Interfacing ConspireComponents is easy and all of the components follow a standard coding style for

all core operations.

To get started with ConspireComponents, simply include the component you want to use in your

PHP code.

Once included, create an instance of the component of choice.

If you have installed the components in a directory other than in the base working directory, the

setWorkingDir() function can be used to change the working directory.

To access the components internal themes, simply call the loadBuiltInTheme() function with the

name of the theme you would like to use. Supported themes and information on custom themes is

available on the reference pages for each component.

Once you are ready to output to the browser: call the render() function.

The first parameter of the render() function on each component is a boolean which specifies

whether the component should echo the rendered output directly to the browser or return the

output for further processing. Direct output is the default behavior;

3.0 – Table Component

The table component allows you to easily display large amounts of data while keeping the code to a

minimum.

In a typical usage scenario, the table component is constructed as an object then filled with data

from a file, database, string or array. The output above is generated by a few basic commands.

In this example, the table object is constructed. The default 'Onyx' theme is applied and the title is

set by a string. The headers are then loaded as a comma separated string and the data source is

loaded from a data.csv file before being rendered to the browser.

The output is rendered pre-styled and is ready to be sent to the users browser. The user can the

search / filter the data by using the filter box and can sort the data by column (ascending and

descending) by clicking the column header. Alternating rows are also styled differently to help make

the data easier to read.

Each cell can be filled with a string value - and any valid HTML can be rendered provided all tags

opened are closed before the end of the cell.

The table component supports all the standard built in theme styles and fully supports custom

styling.

3.1 – Table – Code Reference

class_conspire_table();

function __construct();

Constructs the table component.

function setTitle(string $title);

Sets the title of the table component.
This is normally set to a short string title such as 'My Title' but can also be any valid HTML markup provided any

tags opened in the markup are closed before the end of the string.

function setHeaders(string $type, string or array $input);

Sets the column headers. Rendering a table component without a call to setHeaders will produce a

header-less output - suitable for data grids or where the columns are unknown before building the

table.

$type can be set to either an array or a string depending on the format of $input
Note: there is no default behavior for $type and an invalid input will not set the column headers in the

output

$input can be either a standard PHP array or a comma separated string.

Headers can be simple strings or valid HTML where any opened tags are closed.
Bear in mind however, the headers in the final output render are encapsulated in a standard 'a'

(anchor) tag so they produce a link for the user to use to sort the table.

Note: when using comma separated strings, there is no way to escape the ',' character. Should you

require column headers with commas in them - please use an array.

function addDataRow(string $type, string or array $input);

Adds a single row to the output.

$type can be set to either an array or a string depending on the format of $input
Note: there is no default behavior for $type and an invalid input will not add a row to the table.

$input can be either a standard PHP array or a comma separated string.

Row cells can be simple strings or valid HTML where any opened tags are closed.

Note: when using comma separated strings, there is no way to escape the ',' character. Should you require rows

with commas in them - please use an array.

function addDataSource(string $type, string or array $input);

Adds multiple rows to the output after it's data is retrieved from it's source location.

$type can be set to either an array or a string depending on the format of $input

Note: there is no default behavior for $type and an invalid input will not add a row to the table.

$input can be either a standard PHP array or a comma separated string.

Row cells can be simple strings or valid HTML where any opened tags are closed.

When adding an array as a data source, each indexed object is treated as a new row.

If that object is an array itself, the values of the sub-array is used for the row cells.
Note: input arrays will always be treated as multi-dimensional arrays.

The input can also be a string and can be used in the same way as addDataRow, except any

new lines ("") will be treated as a new row.
Note: there is no way of escaping ',' - if you require data with commas in the text, please use another

method.

If $type is set to 'csvfile' the component will attempt to load the path defind by $input and

load it's data into the table component. Each new line will be treated as a new row and each

comma (',') will be treated as a new column.

If the $type is set to 'mysql' then $input can be set to a valid MySQL query - see

registerDatabase(). If the query is valid the the data returned will be added to the table

output.

Each column in the MySQL table is treated as a column in the table and the number of queried

columns should match the number of headers set using setHeaders()
Note: the query should be read-only in nature. Any deletion attempts will result in script termination. Additionally,

if the database has not been set or cannot be connected to in registerDatabase(), the component will cease

execution.

Finally, if the query results in an error in any way, the script will stop execution and output an error

message.

function registerDatabase(string $type, string $host, string $user, string $pass, string $db);

Registers a database with the table component.

This is required before calling the addDataSource() function with MySQL as the type.
Note: $type can only be set to 'MySQL'.

function fullSort(number $col);

Sorts the internal arrays.

Useful for sorting the table before displaying the output to the user. This should be called after all

data has been added to the table and before rendering the output.

$col is the left index of the column

(Where 0 equals furthest left)

function getThemes();

Returns an array of all the supported themes for the component.

The returned array is not indexed.

function loadBuiltInTheme(string $theme);

Loads and sets a theme from one of the built-in theme styles.

$theme names one of the built in themes

Call getThemes() to see a list of valid theme names

function setThemeInformation(string $element, string $class, string $style, boolean $inlineCSS);

Overrides or sets the theme style for the $element.

$element can be one of the following:

table: applies to the outer container of the component.

tr: applied to each row

tr_alt: applied to each alternating row when alternating rows are to be rendered

td: applied to each cell

tr_header: each column header

a_sort: applies to each column header sort link

title_bar: the block container that holds the title and search containers

title_container: the main title display area

search_container: the filter input container

table_frame: the container for the data row collection

If $class is defined every instance of $element will be tagged with a class attribute in the

TML markup with $class as it's value.

If $style is defined and $inlineCSS is true every instance of $element will have the $style

applied to it in a style attribute in the HTML markup.

$inlineCSS determines whether the component should allow inilne CSS styling
Note: if set to false, only $class will be used when rendering the output.

function render(boolean $echo, boolean $altRows, boolean $allowSort, boolean $allowSearch);

Prepares and sends the output to the browser.

The render function will output a comment explaining what the component is and does, copyright information

and licensee information in the form of a 'Licensed by: {Company Name}' string. The company name is set in

the licensing control panel. These comments cannot be removed or altered as per the license agreement.

Following these comments, the component outputs the HTML markup for the table.

If you have not supplied theme information or loaded a built-in theme, the component will simply output plain

HTML without any style information included.

$echo if set to false, the output will be returned instead of echoed directly to the browser

This defaults to true.

$altRows defines whether the component should use a different theme for alternating rows,

or the same row style for each row. This defaults to true.

$allowSort determines whether the user should be able to sort the table by clicking the

headers. This defaults to true.

$allowSearch determines wther the user should be allowed to filter / search the table.
This defaults to true.

function setSortIconPath(string $direction, string $path);

Sets the path for the icon to be displayed when the user sorts by a column.

$direction can be either 'up' or 'down' and determines which direction to apply $path to.
Note: there is no default behavior for $direction and any invalid input will be passed directly to the

browser.

function __destruct();

Destroys the table and removes any reference to itself in memory and the user session.
This function is normally called at the end of scope and should not need to be called otherwise

3.2 – Table Examples

This section contains examples on how specific functionality is handled using the table component.

Create a table from a CSV (Comma Seperated Values) file

Create a table from data retrieved from a MySQL database query

Add individual rows of data to a table component

Sort by a column before display

3.3 – Customizing Table Appearance

Customizing the table component is generally done by calling

the setThemeInformation() function. A list of elements which

can be changed is included in the reference.

You can customize a table component by loading a built-in

theme and then changing the parts you need to modify, or, by

building a custom theme by successive calls to

setThemeInformation. This example presumes the latter, but

can be adapted to customizing a built-in theme.

Start by building a new conspire_table() object and fill it with

the data.

The output without a theme is pretty basic, so we need to make

a few adjustments.

The setThemeInformation() function can apply a class name to

the specified element, can apply an inline attribute, or a

combination of the two.

If you HTML markup already has CSS defined for tables, you can set the $class parameter to match

the stylesheet. If you CSS overrides whole element declarations, the, the table component will revert

to these whenever a built-in theme hasn't bee loaded.

The class tag is appended before the inline style and anything declared in the $style parameter of

setThemeInformation() will override the default styling for the page.

The following examples work by applying the inline style method, however, copying the style to a

CSS style sheet referenced by the page and setting the $class parameter to match, will create the

same result.

4.0 – Tab Component

The tab component allows you to easily separate information to make it easier for your users to

read.

In a typical usage scenario, the tabs component is constructed as an object and then tabs are added

to the component. The output above is generated by a few basic commands.

In this example the tabs object is constructed, the default 'Onyx' theme is then applied and two tabs

are added to the output. The tabs in this example are created from URL sources. The component

retrieves the output for the URL and displays it inside the tab.

The output is rendered (pre-styled) and is read for output to the user's browser. The user can then

select which tab they want to view and the page is reloaded with the ?t_tab={tabnumber} value

representing the selected tab.

Each tab can be filled with a string value and any valid HTML can be rendered provided all tags

opened are closed before the end of the tab.

The tab component supports all standard built-in theme styles and fully supports custom styling.

4.1 – Tabs – Code Reference

class_conspire_tab();

function __construct();

Constructs the tabs component.

function setWorkingDir(string $dir);

Sets the working directory for the current component.
Note: the directory must exist and must be a valid ConspireComponents installation folder.

No directory checking is performed and incorrect usage of the setWorkingDir() function may result in the improper

execution of the component.

function addTab(string $title, string $content, [link] $dblink);

Adds a tab to the component.

$title sets the display title of the tab

$type sets the content type of the tab

Can be set to 'html', 'url', or 'database'.

$content sets the tab content

If $type is set to 'html' the string can be a valid HTML string as long as any tags

opened within the HTML content is closed before the end of the content string.

If $type is 'url' the content string can be set to a relative or absolute URL.
The content is returned in the same manner as the web server displays it, so the content

must be able to be viewed from a web browser.

If $type is 'database' and the optional $dblink parameter is set the $content string

should be a valid SQL query which will be executed on the $dblink provided.
The contents of the query will be used as the tab content

function addTabAsArray(array $input);

The same as addTab() but the parameters are set via an array which is then passed as $input.

function registerDatabase(string$type, string $host, string $user, string $pass, string $db);

Registers a database with the table component.
This is required before calling the addDataSource() function with MySQL as the type.

Note: $type can only be set to 'MySQL'.

function fullSort();

Sorts the internal arrays.
Useful for sorting the tab list before displaying the output to the user. This should be called after all data has

been added to the table and before rendering the output.

function getThemes();

Returns an array of all the supported themes for the component.
The returned array is not indexed.

function loadBuiltInTheme(string $theme);

Loads and sets a theme from one of the built-in theme styles.

$theme names one of the built in themes

Call getThemes() to see a list of valid theme names

function setThemeInformation(string $element, string $class, string $style, boolean $inlineCSS);

Overrides or sets the theme style for the $element.

$element can be one of the following:

tab: Applied to the tab selectors

tab_active: Applied to the active tab

tab_list: The container for the tab selectors.

tab_frame: The outer container for the tab content

pages: The block container that holds the page buttons and label

page_label: The display text for the current page

page_button: The style for the next page / previous page buttons.

If $class is defined every instance of $element will be tagged with a class attribute in the

TML markup with $class as it's value.

If $style is defined and $inlineCSS is true every instance of $element will have the $style

applied to it in a style attribute in the HTML markup.

$tabPos sets which tab position to apply the theme for. Can be set to 'top', 'left' or 'right'

function render(boolean $echo, [string] $tabPosition, [boolean] $paging);

Prepares and sends the output to the browser.
The render function will output a comment explaining what the component is and does, copyright information

and licensee information in the form of a 'Licensed by: {Company Name}' string. The company name is set in

the licensing control panel. These comments cannot be removed or altered as per the license agreement.

Following these comments, the component outputs the HTML markup for the table.

If you have not supplied theme information or loaded a built-in theme, the component will simply output plain

HTML without any style information included.

$echo if set to false, the output will be returned instead of echoed directly to the browser
This defaults to true.

$tabPosition defines where the tabs should be rendered. This can be 'top', 'left', or 'right'
The setThemeInformation will take the same parameter to apply custom themes.

This defaults to true.

$paging sets whether or not the component should render 'pages' of tabs when the amount

of tabs rendered exceeds the width available to the component. This defaults to true.

function __destruct();

Destroys the table and removes any reference to itself in memory and the user session.

This function is normally called at the end of scope and should not need to be called otherwise.

4.2 - Tab Examples

This section contains examples on how specific functionality is handled using the tabs component.

Create tabs from URLs

Create tabs from data retrieved from a MySQL database query

Create tabs from string or HTML content

Change tab location

Allow tab paging

4.3 - Customizing Tab Appearance

Customizing the tabs component is generally done by calling the setThemeInformation() function. A

list of elements which can be changed is included in the reference.

You can customize a tab component by loading a built-in theme and then changing the parts you

need to modify or by building a custom theme by successive calls to setThemeInformation. This

example presumes the latter, but can be adapted to customizing a built-in theme. Unlike other

components, the setThemeInformation() function on the tab component requires a fourth

parameter ($tabPosition) to be set.

The output without a theme is pretty basic, so we need to make a few adjustments.

You can customize a table component by loading a built-in theme and then changing the parts you

need to modify, or, by building a custom theme by successive calls to setThemeInformation. This

example presumes the latter, but can be adapted to customizing a built-in theme.

The setThemeInformation() function can apply a class name to the specified element, can apply an

inline attribute - or a combination of the two.

The class tag is appended before the inline style and anything declare in the $style parameter of

setThemeInformation() will override the default styling for the page.

The following examples work by applying the inline style method - copying the style to a CSS

stylesheet referenced by the page and setting the $class parameter to match will create the same

result.

5.0 - Form Component

The form component makes it easy to collect data from users by rendering HTML forms and handling

the messy validation and processing side of things.

In a typical usage scenario, the form component is constructed as an object, to which fields are

added and a data processing function is declared. The output above is generated by a few basic

commands.

In this example, the form object is constructed, the default 'Onyx' theme is then applied and two

fields are added to the output. The fields in this example are text type without validation

parameters. The component renders the form and waits for $_POST variables that a passed to the

same script that the object is run from.

When submission is detected, the form processes the command, in this case, by echo-ing the data

back to the user.

The output is rendered (pre-styled) and ready to output directly to the user's browser.

A variety of field types and validation is possible and the submission methods can be anything from

storing data in a database or sending an email to an administrator.

The form component supports all the standard built in theme styles and fully supports custom

styling.

5.1 - Form Code Reference

class conspire_form();

function __construct();

Constructs the form component.

function setWorkingDir(string $dir);

Sets the working directory for the current component.
Note: the directory must exist and must be a valid ConspireComponents installation folder.

No directory checking is performed and incorrect usage of the setWorkingDir() function may result in the

improper execution of the component.

function addField(string $type, string $name, string $default, string$validation, [variant] $params);

Adds a field to the form.

$type sets the type of data to collect

'text' displays a standard text input box
(most browsers will default to this when invalid types are passed).

'password' a masked input box suitable for passwords or sensitive information.

'checkbox' provides the user with a tick box.

'select' produces a drop-down box with preset items.
When using 'select' make sure the $params parameter is an associative array ('key'=>'value')

filled with the items you would like your user to select from. The returned value will be 'key'

whereas the user would see 'value'.

'file' a file upload.
NOTE: the component has no internal capabilities of handling file uploads, a custom

submission method will need to be used if you need to add file upload fields.

$name sets the name of the field for use with $_POST data.
NOTE: the component replaces spaces (' ') with an underscore ('_') as spaces can be unpredictable

when used in $_POST names.

$default

If $type is set to 'text' or 'textarea' the $default will be made visible inside the text

box when the form is rendered to the user.

If $type is 'checkbox' the form will return the value you set here if the checkbox is

ticked when submitted.

If $type is 'select' the component will look through the available items ($params)

and look for a match. If a match is found, the value will be automatically selected for

the user.

$validation determines the data validation method to use

If validation fails, an error will be returned to the user and an explanation on how to resolve

the issue.

'none' means no data validation will be performed (default).

'number' tells the component that only numbers should be accepted on the field.

'alpha' tells the component to allow numbers and letters - but not symbols.

'email' checks the input has a domain and an @ symbol, however it does not check

for user accuracy in anyway.

'notnull' accepts any input as long as it isn't empty.

'match' checks to to see whether the input of two fields match - pass the name of

another field to $params to check for a match (not available on 'select' fields).

'custom' allows for custom validation of the data.
$params should be set to a string of the function name to call for checking.

The function should take one parameter containing the string value of the returned data. If

the data is valid, the function should return a boolean 'true'.

$params A string or array depending on the other settings used.

function addFieldList(string $listType, string /or/ array $input);

Adds multiple fields to the component.

$listType can either be 'string' or 'array'

$input can be either a string or an array, depending on the $listType

If 'string' the component will treat every new line as a new field and each line should

have 3 comma separated values. NOTE: only $type, $name and $default can be set when

using a string.

If 'array' the component will treat $input as a multi-dimensional array containing

field definitions.

function addSubmissionMethod(string $listType, string /or/ array $parameter);

Adds multiple fields to the component.

$type sets the type of submission method

'file' writes a CSV to the path specified in $parameter.

'database' adds the data to a database table. See generateDatabaseSettings.

'email' sends an email to the address supplied in $parameter.

'custom' will call a function named as a string in $parameter. The function should

take no parameters and handle traversing the $_POST data itself.
The submission will fail if the function returns false and will continue to other submission

methods or completion if the function returns true.

'echo' outputs the input as a pre-formatted print_r() to the browser (should only be

used for debugging).

$parameter can be either a string or an array depending on the $type

If $type is 'file' then the $parameter should be the path to write a CSV file to.
If the path is not writable, the submission process will fail.

If $type is 'database' then the $parameter should be a database settings array

returned by generateDatabaseSettings().

If $type is 'email' the $parameter should be a valid email address.

If $type is 'custom' the $parameter should be a string containing the name of a

function to call.

function generateDatabaseSettings(string $type, string $host, string $user, string $pass, string $db,

string $sql);

Similar to registerDatabase() on other components, but takes an additional $sql parameter.
The function returns an array containing the settings which can be passed to addSubmissionMethod.

The $sql parameter should be an 'INSERT' query which contains '' and '' which the component will replace with

the appropriate data before running. mapFIeldToDatabase() should also be called.

Note: $type can only be set to 'MySQL'.

function mapFieldToDatabase(string $field, string $dbcolname);

Maps a field to the database when the database field name is different to the field name given to

the component.

$field should be equal to the name given to the field in the form component.

$dbcolname is the name of the database column to place the data in.

function loadBuiltInTheme(string $theme);

Loads and sets a theme from one of the built-in theme styles.

$theme names one of the built in themes
Call getThemes() to see a list of valid theme names

function setThemeInformation(string $element, string $class, string $style);

Overrides or sets the theme style for the $element.

$element can be one of the following:

input: Applied to each input element

If $class is defined every instance of $element will be tagged with a class attribute in the

TML markup with $class as it's value.

If $style is defined and $inlineCSS is true every instance of $element will have the $style

applied to it in a style attribute in the HTML markup.

function render(boolean $echo, [boolean] $reRenderOnFail, [boolean] $forceRedirect);

Prepares and sends the output to the browser.

The render function will output a comment explaining what the component is and does, copyright information

and licensee information in the form of a 'Licensed by: {Company Name}' string. The company name is set in

the licensing control panel. These comments cannot be removed or altered as per the license agreement.

Following these comments, the component outputs the HTML markup for the table.

If you have not supplied theme information or loaded a built-in theme, the component will simply output plain

HTML without any style information included.

$echo if set to false, the output will be returned instead of echoed directly to the browser.
This defaults to true.

$reRenderOnFail defines whether the component should re-render it's output should the

data submission process fail.

$forceRedirect sets whether or not the component should attempt to redirect the page to

the URL specified in setContinueLink(). This will not work if the browser has been supplied

with content before the component is rendered.

function setContinueLink(string $link);

Sets the URL of a page to continue to automatically on successful submission of the data, if

$forceRedirect is set to true in the render() call.
This should be set BEFORE calling render()

function setSubmitLabel(string $label);

Sets the text to be displayed on the submit button.

function __destruct();

Destroys the component and removes any reference to itself in memory and the user session.
This function is normally called at the end of scope and should not need to be called otherwise.

5.2 - Form Examples

This section contains examples on how specific functionality is handled using the form component.

Add Fields

5.2 - Customizing Form Appearance

Customizing the form component is generally done by calling the

setThemeInformation() function. A list of elements which can be

changed is included in the reference. You can customize a form

component by loading a built-in theme and then changing the

parts you need to modify - or by building a custom theme by

successive calls to setThemeInformation(). This example

presumes the latter, but can be adapted to customizing a built in

theme.

The output without a theme is a plain HTML form, which in most

projects is fine since the stylesheet will generally contain rules for

forms. However, in some circumstances, you may wish to use the

inbuilt theme functions.

The setThemeInformation() function can apply a class name to the specified element, can apply an

inline attribute, or a combination of the two.

If your HTML markup already has CSS defined for forms, you can set the $class parameter to match

the stylesheet. If your CSS overrides whole element declarations, the table component will revert to

these whenever a built-in theme hasn't been loaded.

The class tag is appended before the inline style and anything declared in the $style parameter of

setThemeInformation() will override the default styling for the page.

The following examples work by applying the inline style method, copying the style to a CSS

stylesheet referenced by the page and setting the $class parameter to match will create the same

result.

6.0 - Tree Component

The tree component helps organize data into parent/child nodes that can be expanded and

collapsed on demand.

In a typical usage scenario, the tree component is constructed as an object, nodes (called branches)

are added to the object and the display is rendered. The output is generated by a few basic

commands.

In this example, the tree object is constructed, the default 'Onyx' theme is then applied and two

parent nodes are added to the output. Child nodes are then appended to the parent nodes.

6.1 - Tree Code Reference

class conspire_tree();

function __construct();

Constructs the tree component.

function setWorkingDir(string $dir);

Sets the working directory for the current component.
Note: the directory must exist and must be a valid ConspireComponents installation folder.

No directory checking is performed and incorrect usage of the setWorkingDir() function may result in the

improper execution of the component.

function setTitle(string $title);

Sets the title of the tree component.
This is normally set to a short string title such as 'My Title' but can also be any valid HTML markup provided

any tags opened in the markup are closed before the end of the string.

function addBranch([variant] $id, string $text, string $parent);

Adds a node to the tree or a parent item.

$id can be any unique identifier

$text is the text display in the tree node.
Text can be any valid HTML as long as any opened tags are closed before the end of the string,

however size constraints may be a limiting factor when using the built-in themes.

$parent is the identifier of the parent node this node should be added to.

If blank, a new top-level node will be added to the tree.

If set to the ID of another node the new node will be added to the $parent and

users can expand the parent item to reveal the new child node.

function loadBuiltInTheme(string $theme);

Loads and sets a theme from one of the built-in theme styles.

$theme names one of the built in themes
Call getThemes() to see a list of valid theme names

function setThemeInformation(string $element, string $class, string $style);

Overrides or sets the theme style for the $element.

$element can be one of the following:

tree_container: The outer wrapper.

title: The top title bar

search_container: The lower search box

node: Each node

If $class is defined every instance of $element will be tagged with a class attribute in the

HTML markup with $class as it's value.

function render([boolean] $echo, [boolean] $disableSearch);

Prepares and sends the output to the browser.
The render function will output a comment explaining what the component is and does, copyright information

and licensee information in the form of a 'Licensed by: {Company Name}' string. The company name is set in

the licensing control panel. These comments cannot be removed or altered as per the license agreement.

Following these comments, the component outputs the HTML markup for the table.

If you have not supplied theme information or loaded a built-in theme, the component will simply output plain

HTML without any style information included.

$echo if set to false, the output will be returned instead of echoed directly to the browser

This defaults to true.

$disableSearch excludes the lower search bar from the rendered output.

function __destruct();

Destroys the component and removes any reference to itself in memory and the user session.

This function is normally called at the end of scope and should not need to be called otherwise.

6.2 - Tree Examples

This section contains examples on how specific functionality is handled using the tree component.

Create a basic tree

Disable the search container

6.3 - Customizing Tree Appearance

Customizing the tree component is generally done by calling the setThemeInformation() function.

A list of elements which can be changed is included in the reference.

You can customize a tree component by

loading a built-in theme and then

changing the parts you need to modify - or

by building a custom theme by successive

calls to setThemeInformation. This

example presumes the latter, but can be

adapted to customizing a built-in theme.

Start by building a new conspire_tree()

object and fill it with nodes. The output

without a theme is pretty basic so we

need to make a few adjustments.

The setThemeInformation() function can

apply a class name to the specified

element, can apply an inline attribute, or a

combination of the two.

If your HTML markup already has CSS

defined, you can set the $Class parameter

to match the stylesheet. If your CSS

overrides whole element declarations, the

component will revert to these whenever

a built-in theme hasn't been loaded.

The class tag is appended before the inline style, and anything declared in the $style parameter of

setThemeInformation() will override the default styling for the page.

The following examples work by applying the inline style method - copying the style to a CSS

stylesheet referenced by the page and setting the $Class parameter to match will create the same

result.

